User Tools

Site Tools


freeness

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
freeness [2023/03/09 13:32] ngilliersfreeness [2023/03/09 14:35] (current) ngilliers
Line 1: Line 1:
-======== Freeness ========+========= Freeness =========
 ---- ----
  
-**Definition** [Freeness [(:cite:freeness:voiculescu1987multiplication)] + 
-]+<typo font-size:medium;>**Definition**  
 +</typo>[(:cite:freeness:voiculescu1987multiplication)] 
  
 Let $\mathcal{A}$ be a unital complex algebra equipped with a linear functional $\psi:\mathcal{A}\to \mathbb{C}$ where $\psi$ is unital. Let $\mathcal{A}_1 ,\mathcal{A}_2 \subset \mathcal{A}$ be two unital subalgebras. The two subalgebras $\mathcal{A}_1$ and $\mathcal{A}_2$ are //free// with respect to $\psi$ if, for any sequence $(a_1,\ldots,a_n)$ of $\mathcal{A}_1\cup \mathcal{A}_2$ which is alternating and centered with respect to $\psi$, we have $$\label{eqn:freemoments} Let $\mathcal{A}$ be a unital complex algebra equipped with a linear functional $\psi:\mathcal{A}\to \mathbb{C}$ where $\psi$ is unital. Let $\mathcal{A}_1 ,\mathcal{A}_2 \subset \mathcal{A}$ be two unital subalgebras. The two subalgebras $\mathcal{A}_1$ and $\mathcal{A}_2$ are //free// with respect to $\psi$ if, for any sequence $(a_1,\ldots,a_n)$ of $\mathcal{A}_1\cup \mathcal{A}_2$ which is alternating and centered with respect to $\psi$, we have $$\label{eqn:freemoments}
Line 13: Line 15:
  
  
----- 
  
-Let $R>0$ and, for each $N\geq 1$, let $U_N$ be a Haar distributed unitary random matrix. Then, for any $P\in \mathbb{C}\langle X_k,Y_k:k\in K\rangle$, we have $$\mathbb{E}\left[\frac{1}{N}{\rm Tr}(P({\bf A}_N,U_N{\bf B}_NU_N^{\star}))\right] = \psi_{{\bf A}_N} * \psi_{{\bf B}_N}(P)+O(N^{-2})$$ uniformly for the the choice of any sequences ${\bf A}_N = \{A_N^k: k \in K\}$ and ${\bf B}_N = \{B^k_N:~k \in K\}$ of $N\times N$ matrices ($N\geq 1$) bounded in operator norm by $R$+Let $R > 0$ a real number. For each $N\geq 1$, let $U_N$ be a Haar distributed unitary random matrix. Then, for any $P\in \mathbb{C}\langle X_k,Y_k:k\in K\rangle$, we have $$\mathbb{E}\left[\frac{1}{N}{\rm Tr}(P({\bf A}_N,U_N{\bf B}_NU_N^{\star}))\right] = \psi_{{\bf A}_N} * \psi_{{\bf B}_N}(P)+O(N^{-2})$$ uniformly for the the choice of any sequences ${\bf A}_N = \{A_N^k: k \in K\}$ and ${\bf B}_N = \{B^k_N:~k \in K\}$ of $N\times N$ matrices ($N\geq 1$) bounded in operator norm by $R$
  
  
freeness.1678368766.txt.gz · Last modified: 2023/03/09 13:32 by ngilliers